Schwerpunkt berechnen

Berechnung mit dem Tabellenverfahren

Das Tabellenverfahren ist praktisch bei der Schwerpunktberechnung von zusammengesetzten Flächen. Hinweis: Alle Angaben sind in cm.

bil_schwerpunktVorgehen:

  1. Flächenunterteilung in einfache Formen, z.B. Rechtecke, Kreise, Dreiecke
  2. Teilschwerpunkte bestimmen
  3. Teilflächen bestimmen

bil_schwerpunkt_unterteilt

Gleichungen tabellarisch auswerten und Schwerpunkt bestimmen!

Beachte, dass man immer ein Referenzkoordinatensystem (hier: \bar{y}-\bar{z}) haben muss, worauf man sich bezieht. Das ist in der Regel gegeben! Das Schwerpunkt-Koordinatensystem wird mit y-z bezeichnet.

Warum y-z und nicht x-y? In der Regel liegt die x-Achse entlang des Bauteils. Stellt euch einen Balken vor und dann guckt ihr euch den Querschnitt des Balkens an. Dann guckt ihr auf die x-Achse und seht das y-z-Koordinatensystem nach dem Rechtssystem.

bil_schwerpunkt_tabelle

Gleichung für die Berechnung der Schwerpunktkoordinaten:

    \begin{align*} \bar{y}_s = \frac{\sum \bar{y}_i \cdot A_i}{\sum A_i} \quad \textrm{und} \quad  \bar{z}_s = \frac{\sum \bar{z}_i \cdot A_i}{\sum A_i} \end{align*}

Die Lage des Schwerpunktes ist in diesem Fall bei:

    \begin{align*} \bar{y}_s = \frac{142000}{2800} \approx 50,71 \ \textrm{cm} \quad \textrm{und} \quad  \bar{z}_s = \frac{104000}{2800} \approx 37,14 \ \textrm{cm} \end{align*}

Ausgehend von dem \bar{y}-\bar{z}-Koordinatensystem kann der Schwerpunkt eingetragen werden. In dem Schwerpunkt findet sich dann das Schwerpunktkoordinatensystem y-z.

bil_schwerpunkt_final

 

Video Schwerpunkt berechnen mit Tabellenverfahren

Schwerpunkt berechnen – Tabellenverfahren – Technische Mechanik

 Video Schwerpunkt berechnen mit Tabellenverfahren (ausgestanzte Fläche)

Schwerpunkt berechnen mit ausgestanzter Fläche

Video Schwerpunkt mit Integral bestimmen

Schwerpunkt mit Integral bestimmen